Copied to
clipboard

G = C42.3D4order 128 = 27

3rd non-split extension by C42 of D4 acting faithfully

p-group, non-abelian, nilpotent (class 5), monomial

Aliases: C42.3D4, 2- 1+4:C4, C2.10C2wrC4, C4.10D4:C4, (C2xD4).2D4, C42:3C4:1C2, D4.8D4.1C2, C22.3(C23:C4), C4.4D4.2C22, C42.C22:6C2, (C2xQ8).1(C2xC4), (C2xC4).7(C22:C4), SmallGroup(128,136)

Series: Derived Chief Lower central Upper central Jennings

C1C2C2xQ8 — C42.3D4
C1C2C22C2xC4C2xD4C4.4D4D4.8D4 — C42.3D4
C1C2C22C2xC4C2xQ8 — C42.3D4
C1C2C22C2xC4C4.4D4 — C42.3D4
C1C2C2C22C2xC4C4.4D4 — C42.3D4

Generators and relations for C42.3D4
 G = < a,b,c,d | a4=b4=c4=1, d2=a-1, ab=ba, cac-1=a-1b-1, ad=da, cbc-1=a2b-1, dbd-1=a2b, dcd-1=a-1c-1 >

Subgroups: 184 in 56 conjugacy classes, 14 normal (all characteristic)
Quotients: C1, C2, C4, C22, C2xC4, D4, C22:C4, C23:C4, C2wrC4, C42.3D4
2C2
8C2
8C2
2C4
4C4
4C22
4C22
4C4
4C4
8C22
16C4
2Q8
2C2xC4
2C23
2D4
2C2xC4
4C8
4D4
4C2xC4
4C8
4C2xC4
4Q8
4D4
4D4
4C8
4C2xC4
4Q8
8C2xC4
2M4(2)
2C4oD4
4C2xQ8
4C4oD4
4C4oD4
4D8
4SD16
4C2xC8
4C22:C4
4C22:C4
2C8:C4
2C4wrC2
2C8:C22
2C23:C4

Character table of C42.3D4

 class 12A2B2C2D4A4B4C4D4E4F4G8A8B8C8D8E
 size 11288444881616888816
ρ111111111111111111    trivial
ρ2111-11111-11-1-11111-1    linear of order 2
ρ3111-11111-1111-1-1-1-1-1    linear of order 2
ρ41111111111-1-1-1-1-1-11    linear of order 2
ρ5111-1-1-1-11-11i-i-iii-i1    linear of order 4
ρ61111-1-1-1111-ii-iii-i-1    linear of order 4
ρ71111-1-1-1111i-ii-i-ii-1    linear of order 4
ρ8111-1-1-1-11-11-iii-i-ii1    linear of order 4
ρ92220-22220-20000000    orthogonal lifted from D4
ρ1022202-2-220-20000000    orthogonal lifted from D4
ρ1144-4-20000200000000    orthogonal lifted from C2wrC4
ρ124440000-4000000000    orthogonal lifted from C23:C4
ρ1344-420000-200000000    orthogonal lifted from C2wrC4
ρ144-4000-2i2i000001-i-1-i1+i-1+i0    complex faithful
ρ154-4000-2i2i00000-1+i1+i-1-i1-i0    complex faithful
ρ164-40002i-2i00000-1-i1-i-1+i1+i0    complex faithful
ρ174-40002i-2i000001+i-1+i1-i-1-i0    complex faithful

Permutation representations of C42.3D4
On 16 points - transitive group 16T397
Generators in S16
(5 7)(6 8)(9 15 13 11)(10 16 14 12)
(1 4 2 3)(5 8 7 6)(9 11 13 15)(10 16 14 12)
(1 12 8 15)(2 16 6 11)(3 10 7 13)(4 14 5 9)
(1 2)(3 4)(5 6 7 8)(9 10 11 12 13 14 15 16)

G:=sub<Sym(16)| (5,7)(6,8)(9,15,13,11)(10,16,14,12), (1,4,2,3)(5,8,7,6)(9,11,13,15)(10,16,14,12), (1,12,8,15)(2,16,6,11)(3,10,7,13)(4,14,5,9), (1,2)(3,4)(5,6,7,8)(9,10,11,12,13,14,15,16)>;

G:=Group( (5,7)(6,8)(9,15,13,11)(10,16,14,12), (1,4,2,3)(5,8,7,6)(9,11,13,15)(10,16,14,12), (1,12,8,15)(2,16,6,11)(3,10,7,13)(4,14,5,9), (1,2)(3,4)(5,6,7,8)(9,10,11,12,13,14,15,16) );

G=PermutationGroup([[(5,7),(6,8),(9,15,13,11),(10,16,14,12)], [(1,4,2,3),(5,8,7,6),(9,11,13,15),(10,16,14,12)], [(1,12,8,15),(2,16,6,11),(3,10,7,13),(4,14,5,9)], [(1,2),(3,4),(5,6,7,8),(9,10,11,12,13,14,15,16)]])

G:=TransitiveGroup(16,397);

Matrix representation of C42.3D4 in GL4(F5) generated by

1313
3321
1402
4120
,
1040
1330
2040
3032
,
0032
1011
0122
0003
,
0410
0314
0433
1322
G:=sub<GL(4,GF(5))| [1,3,1,4,3,3,4,1,1,2,0,2,3,1,2,0],[1,1,2,3,0,3,0,0,4,3,4,3,0,0,0,2],[0,1,0,0,0,0,1,0,3,1,2,0,2,1,2,3],[0,0,0,1,4,3,4,3,1,1,3,2,0,4,3,2] >;

C42.3D4 in GAP, Magma, Sage, TeX

C_4^2._3D_4
% in TeX

G:=Group("C4^2.3D4");
// GroupNames label

G:=SmallGroup(128,136);
// by ID

G=gap.SmallGroup(128,136);
# by ID

G:=PCGroup([7,-2,2,-2,2,-2,-2,-2,56,85,422,723,352,346,745,1684,1411,718,375,172,4037,2028]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=a^-1,a*b=b*a,c*a*c^-1=a^-1*b^-1,a*d=d*a,c*b*c^-1=a^2*b^-1,d*b*d^-1=a^2*b,d*c*d^-1=a^-1*c^-1>;
// generators/relations

Export

Subgroup lattice of C42.3D4 in TeX
Character table of C42.3D4 in TeX

׿
x
:
Z
F
o
wr
Q
<